3.12.64 \(\int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx\) [1164]

Optimal. Leaf size=185 \[ \frac {2 C \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{a^{3/2} d}+\frac {(3 A-5 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{2 \sqrt {2} a^{3/2} d}-\frac {(A+C) \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \]

[Out]

-1/2*(A+C)*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(3/2)+2*C*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c)
)^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^(3/2)/d+1/4*(3*A-5*C)*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(
1/2)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^(3/2)/d*2^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.36, antiderivative size = 185, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.189, Rules used = {4350, 4170, 4108, 3893, 212, 3886, 221} \begin {gather*} \frac {(3 A-5 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {2 C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{3/2} d}-\frac {(A+C) \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + C*Sec[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^(3/2)),x]

[Out]

(2*C*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(a^(3/2)*
d) + ((3*A - 5*C)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])]*Sqrt[C
os[c + d*x]]*Sqrt[Sec[c + d*x]])/(2*Sqrt[2]*a^(3/2)*d) - ((A + C)*Sin[c + d*x])/(2*d*Cos[c + d*x]^(3/2)*(a + a
*Sec[c + d*x])^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3886

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(a/(b
*f))*Sqrt[a*(d/b)], Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]

Rule 3893

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*b*(d/
(a*f)), Subst[Int[1/(2*b - d*x^2), x], x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 4108

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Dist[(A*b - a*B)/b, Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Dist[B
/b, Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A
*b - a*B, 0] && EqQ[a^2 - b^2, 0]

Rule 4170

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(-a)*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*
(2*m + 1))), x] + Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*C*n + A*b
*(2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x
] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 4350

Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cos[a + b*x])^m*(c*Sec[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sec[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx\\ &=-\frac {(A+C) \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)} \left (-\frac {1}{2} a (3 A-C)-2 a C \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{2 a^2}\\ &=-\frac {(A+C) \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}}+\frac {\left ((3 A-5 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a}+\frac {\left (C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx}{a^2}\\ &=-\frac {(A+C) \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}}-\frac {\left ((3 A-5 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{2 a d}-\frac {\left (2 C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^2 d}\\ &=\frac {2 C \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{a^{3/2} d}+\frac {(3 A-5 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{2 \sqrt {2} a^{3/2} d}-\frac {(A+C) \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.62, size = 114, normalized size = 0.62 \begin {gather*} \frac {(3 A-5 C) \tanh ^{-1}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos \left (\frac {1}{2} (c+d x)\right )+4 \sqrt {2} C \tanh ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos \left (\frac {1}{2} (c+d x)\right )-(A+C) \tan \left (\frac {1}{2} (c+d x)\right )}{2 a d \sqrt {\cos (c+d x)} \sqrt {a (1+\sec (c+d x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + C*Sec[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^(3/2)),x]

[Out]

((3*A - 5*C)*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2] + 4*Sqrt[2]*C*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[(c
 + d*x)/2] - (A + C)*Tan[(c + d*x)/2])/(2*a*d*Sqrt[Cos[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [A]
time = 0.20, size = 304, normalized size = 1.64

method result size
default \(-\frac {\left (-1+\cos \left (d x +c \right )\right ) \left (2 C \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}\, \sin \left (d x +c \right )+2 C \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (-1-\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}\, \sin \left (d x +c \right )+3 A \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sin \left (d x +c \right )+A \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )-5 C \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sin \left (d x +c \right )+C \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )-A \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}-C \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\right ) \left (\sqrt {\cos }\left (d x +c \right )\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}}{2 d \,a^{2} \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )^{3}}\) \(304\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/d*(-1+cos(d*x+c))*(2*C*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)+sin(d*x+c))*2^(1/2))*2^(1/2)*si
n(d*x+c)+2*C*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(-1-cos(d*x+c)+sin(d*x+c))*2^(1/2))*2^(1/2)*sin(d*x+c)+3*A*a
rctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*sin(d*x+c)+A*(-2/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)-5*C*arctan(1
/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*sin(d*x+c)+C*(-2/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)-A*(-2/(1+cos(d*x+c)
))^(1/2)-C*(-2/(1+cos(d*x+c)))^(1/2))*cos(d*x+c)^(1/2)*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)/a^2/(-2/(1+cos(d*x+
c)))^(1/2)/sin(d*x+c)^3

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 3153 vs. \(2 (152) = 304\).
time = 0.69, size = 3153, normalized size = 17.04 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/4*((3*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x +
 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(2*d*x + 2*c)^2 + 12*(log(cos(1/2*d*x + 1
/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/
2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c)^2 + 3*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2
+ 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) +
 1))*sin(2*d*x + 2*c)^2 + 12*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1
) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(d*x + c)^2 + 2*(6*(
log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2
 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c) + 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2
*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(
1/2*d*x + 1/2*c) + 1) - 2*sin(3/2*d*x + 3/2*c) + 2*sin(1/2*d*x + 1/2*c))*cos(2*d*x + 2*c) + 4*(3*log(cos(1/2*d
*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*
d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 2*sin(1/2*d*x + 1/2*c))*cos(d*x + c) + 4*(3*(log(cos(1/2*d*x +
1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1
/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(d*x + c) + cos(3/2*d*x + 3/2*c) - cos(1/2*d*x + 1/2*c))*sin(2*d*x +
 2*c) - 4*(2*cos(d*x + c) + 1)*sin(3/2*d*x + 3/2*c) + 8*cos(3/2*d*x + 3/2*c)*sin(d*x + c) - 8*cos(1/2*d*x + 1/
2*c)*sin(d*x + c) + 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 3*lo
g(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 4*sin(1/2*d*x + 1/2*c))*A/((
sqrt(2)*a*cos(2*d*x + 2*c)^2 + 4*sqrt(2)*a*cos(d*x + c)^2 + sqrt(2)*a*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*a*sin(2*d
*x + 2*c)*sin(d*x + c) + 4*sqrt(2)*a*sin(d*x + c)^2 + 4*sqrt(2)*a*cos(d*x + c) + 2*(2*sqrt(2)*a*cos(d*x + c) +
 sqrt(2)*a)*cos(2*d*x + 2*c) + sqrt(2)*a)*sqrt(a)) + (4*(sin(2*d*x + 2*c) + 2*sin(1/2*arctan2(sin(2*d*x + 2*c)
, cos(2*d*x + 2*c))))*cos(3/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*(sqrt(2)*cos(2*d*x + 2*c)^2 + 4
*sqrt(2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*sin(2
*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*sqrt(2)*sin(1/2*arctan2(sin(2*d*x + 2*c),
 cos(2*d*x + 2*c)))^2 + 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2
*c))) + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2
*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*
x + 2*c))) + 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) - 2*(sqrt(2)*cos(2*d*x + 2*c)
^2 + 4*sqrt(2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 4*sqrt(2)
*sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*sqrt(2)*sin(1/2*arctan2(sin(2*d*x +
 2*c), cos(2*d*x + 2*c)))^2 + 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d
*x + 2*c))) + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))
^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), co
s(2*d*x + 2*c))) - 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) + 2*(sqrt(2)*cos(2*d*x
+ 2*c)^2 + 4*sqrt(2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 4*s
qrt(2)*sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*sqrt(2)*sin(1/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*cos(1/2*arctan2(sin(2*d*x + 2*c), c
os(2*d*x + 2*c))) + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x +
2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*
c), cos(2*d*x + 2*c))) + 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) - 2*(sqrt(2)*cos(
2*d*x + 2*c)^2 + 4*sqrt(2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sqrt(2)*sin(2*d*x + 2*c)^2
 + 4*sqrt(2)*sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*sqrt(2)*sin(1/2*arctan2
(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*cos(1/2*arctan2(sin(2*d*x + 2
*c), cos(2*d*x + 2*c))) + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*
d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*
x + 2*c), cos(2*d*x + 2*c))) - 2*sqrt(2)*sin(1/...

________________________________________________________________________________________

Fricas [A]
time = 3.57, size = 600, normalized size = 3.24 \begin {gather*} \left [-\frac {\sqrt {2} {\left ({\left (3 \, A - 5 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (3 \, A - 5 \, C\right )} \cos \left (d x + c\right ) + 3 \, A - 5 \, C\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, {\left (A + C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 4 \, {\left (C \cos \left (d x + c\right )^{2} + 2 \, C \cos \left (d x + c\right ) + C\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, -\frac {\sqrt {2} {\left ({\left (3 \, A - 5 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (3 \, A - 5 \, C\right )} \cos \left (d x + c\right ) + 3 \, A - 5 \, C\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) + 2 \, {\left (A + C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 4 \, {\left (C \cos \left (d x + c\right )^{2} + 2 \, C \cos \left (d x + c\right ) + C\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[-1/8*(sqrt(2)*((3*A - 5*C)*cos(d*x + c)^2 + 2*(3*A - 5*C)*cos(d*x + c) + 3*A - 5*C)*sqrt(a)*log(-(a*cos(d*x +
 c)^2 + 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*
x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 4*(A + C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(
cos(d*x + c))*sin(d*x + c) - 4*(C*cos(d*x + c)^2 + 2*C*cos(d*x + c) + C)*sqrt(a)*log((a*cos(d*x + c)^3 - 4*sqr
t(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 2)*sqrt(cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x
+ c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), -1/4*
(sqrt(2)*((3*A - 5*C)*cos(d*x + c)^2 + 2*(3*A - 5*C)*cos(d*x + c) + 3*A - 5*C)*sqrt(-a)*arctan(sqrt(2)*sqrt(-a
)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) + 2*(A + C)*sqrt((a*cos(d*x + c
) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 4*(C*cos(d*x + c)^2 + 2*C*cos(d*x + c) + C)*sqrt(-a)*ar
ctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*
cos(d*x + c) - 2*a)))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {A + C \sec ^{2}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \sqrt {\cos {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(3/2)/cos(d*x+c)**(1/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)/((a*(sec(c + d*x) + 1))**(3/2)*sqrt(cos(c + d*x))), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)/((a*sec(d*x + c) + a)^(3/2)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(3/2)),x)

[Out]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(3/2)), x)

________________________________________________________________________________________